686 research outputs found

    Self-help interventions to reduce self-stigma in people with mental health problems: A systematic literature review

    Get PDF
    People with mental health problems often experience self-stigma, whereby they internalise stereotypic or stigmatising views held by others. Self-stigma is known to have negative effects on self-esteem and self-efficacy and a continuing impact on psychological wellbeing. Self-help interventions designed to reduce self-stigma may have an important contribution to make. This review aimed to provide an overview and critical appraisal of the literature on self-help interventions that target self-stigma related to mental health problems. A systematic review of five electronic databases (PsycINFO, MEDLINE, CINAHL Plus, Scopus and EMBASE) was carried out to identify articles published between January 2007 and July 2019. Eight articles that reported on self-help interventions for self-stigma were identified and evaluated using a combination of quality appraisal and narrative synthesis

    A guided self-help intervention supporting mental health professionals’ decisions regarding sharing of lived experience

    Get PDF
    Mental health professionals with lived experience often experience heightened stigma and fear that their competency may be questioned. We present a new intervention (HOP-MHP) designed to support them in decisions about sharing their lived experience and preliminary results regarding the intervention’s acceptability and feasibility

    Resonance ionization spectroscopy of thorium isotopes - towards a laser spectroscopic identification of the low-lying 7.6 eV isomer of Th-229

    Full text link
    In-source resonance ionization spectroscopy was used to identify an efficient and selective three step excitation/ionization scheme of thorium, suitable for titanium:sapphire (Ti:sa) lasers. The measurements were carried out in preparation of laser spectroscopic investigations for an identification of the low-lying Th-229m isomer predicted at 7.6 +- 0.5 eV above the nuclear ground state. Using a sample of Th-232, a multitude of optical transitions leading to over 20 previously unknown intermediate states of even parity as well as numerous high-lying odd parity auto-ionizing states were identified. Level energies were determined with an accuracy of 0.06 cm-1 for intermediate and 0.15 cm-1 for auto-ionizing states. Using different excitation pathways an assignment of total angular momenta for several energy levels was possible. One particularly efficient ionization scheme of thorium, exhibiting saturation in all three optical transitions, was studied in detail. For all three levels in this scheme, the isotope shifts of the isotopes Th-228, Th-229, and Th-230 relative to Th-232 were measured. An overall efficiency including ionization, transport and detection of 0.6 was determined, which was predominantly limited by the transmission of the mass spectrometer ion optics

    Taking piezoelectric microsystems from the laboratory to production

    Get PDF
    Reliable integration of piezoelectric thin films into silicon-based microsystems on an industrial scale is a key enabling technology for a wide range of future products. However, current knowledge in the field is mostly limited to the conditions and scale of academic laboratories. Thus, knowledge on performance, reliability and reproducibility of the films and methods at industrial level is scarce. The present study intends to contribute to the development of reliable technology for integration of piezoelectric thin films into MEMS on an industrial scale. A test wafer design that contained more than 500 multimorph cantilevers, bridges and membranes in the size range between 50 and 1,500 ÎŒm was developed. The active piezoelectric material was a ∌2 ÎŒm thin film of lead zirconate titanate (PZT) deposited by a state-of-the-art chemical solution deposition (CSD) procedure. Automated measurements of C(V) and dielectric dissipation factor at 1 kHz were made on more than 200 devices at various locations across the wafer surface. The obtained standard deviations were 4.5 and 11% for the permittivity and dissipation factor, respectively. Values for the transverse piezoelectric charge coefficient, e 31,f, of up to −15.1 C/m2 were observed. Fatigue tests with a 5 kHz signal applied to a typical cantilever at ± 25 V led to less than 10% reduction of the remanent polarisation after 2 × 107 bipolar cycles. Cantilever out-of-plane deflection at zero field measured after poling was less than 1.1% for a typical 800 ÎŒm cantilever

    Evaluating model performance of an ensemble-based chemical data assimilation system during INTEX-B field mission

    Get PDF
    We present a global chemical data assimilation system using a global atmosphere model, the Community Atmosphere Model (CAM3) with simplified chemistry and the Data Assimilation Research Testbed (DART) assimilation package. DART is a community software facility for assimilation studies using the ensemble Kalman filter approach. Here, we apply the assimilation system to constrain global tropospheric carbon monoxide (CO) by assimilating meteorological observations of temperature and horizontal wind velocity and satellite CO retrievals from the Measurement of Pollution in the Troposphere (MOPITT) satellite instrument. We verify the system performance using independent CO observations taken on board the NSF/NCAR C-130 and NASA DC-8 aircrafts during the April 2006 part of the Intercontinental Chemical Transport Experiment (INTEX-B). Our evaluations show that MOPITT data assimilation provides significant improvements in terms of capturing the observed CO variability relative to no MOPITT assimilation (i.e. the correlation improves from 0.62 to 0.71, significant at 99% confidence). The assimilation provides evidence of median CO loading of about 150 ppbv at 700 hPa over the NE Pacific during April 2006. This is marginally higher than the modeled CO with no MOPITT assimilation (~140 ppbv). Our ensemble-based estimates of model uncertainty also show model overprediction over the source region (i.e. China) and underprediction over the NE Pacific, suggesting model errors that cannot be readily explained by emissions alone. These results have important implications for improving regional chemical forecasts and for inverse modeling of CO sources and further demonstrate the utility of the assimilation system in comparing non-coincident measurements, e.g. comparing satellite retrievals of CO with in-situ aircraft measurements

    Error growth in the Mesosphere and Lower Thermosphere Based on Hindcast Experiments in a Whole Atmosphere Model

    Get PDF
    The capability to forecast conditions in the mesosphere and lower thermosphere is investigated based on 30‐day hindcast experiments that were initialized bimonthly during 2009 and 2010. The hindcasts were performed using the Whole Atmosphere Community Climate Model with thermosphere‐ionosphere eXtension (WACCMX) with data assimilation provided by the Data Assimilation Research Testbed (DART) ensemble Kalman filter. Analysis of the WACCMX+DART hindcasts reveals several important features that are relevant to forecasting the middle atmosphere. The results show a clear dependence on spatial scale, with the slowest error growth occurring in the zonal mean and the fastest error growth occurring for small‐scale waves. The error growth rate is also found to be significantly greater in the upper mesosphere and lower thermosphere compared to in the upper stratosphere to lower mesosphere, suggesting that the forecast skill decreases with increasing altitude. The results demonstrate that the errors in the lower thermosphere reach saturation, on average, in less than 5 days, at least with the current version of WACCMX+DART. A seasonal dependency to the error growth is found at high latitudes in the Northern and Southern Hemispheres but not in the tropics or global average. We additionally investigate the error growth rates for migrating and nonmigrating atmospheric tides and find that the errors saturate after ∌5 days for tides in the lower thermosphere. The results provide an initial assessment of the error growth rates in the mesosphere and lower thermosphere and are relevant for understanding how whole atmosphere models can potentially improve space weather forecasting

    Breakdown of the Isobaric Multiplet Mass Equation for the A = 20 and 21 Multiplets

    Full text link
    Using the Penning trap mass spectrometer TITAN, we performed the first direct mass measurements of 20,21Mg, isotopes that are the most proton-rich members of the A = 20 and A = 21 isospin multiplets. These measurements were possible through the use of a unique ion-guide laser ion source, a development that suppressed isobaric contamination by six orders of magnitude. Compared to the latest atomic mass evaluation, we find that the mass of 21Mg is in good agreement but that the mass of 20Mg deviates by 3{\sigma}. These measurements reduce the uncertainties in the masses of 20,21Mg by 15 and 22 times, respectively, resulting in a significant departure from the expected behavior of the isobaric multiplet mass equation in both the A = 20 and A = 21 multiplets. This presents a challenge to shell model calculations using either the isospin non-conserving USDA/B Hamiltonians or isospin non-conserving interactions based on chiral two- and three-nucleon forces.Comment: 5 pages, 2 figure

    Precision mass measurements of magnesium isotopes and implications on the validity of the Isobaric Mass Multiplet Equation

    Full text link
    If the mass excess of neutron-deficient nuclei and their neutron-rich mirror partners are both known, it can be shown that deviations of the Isobaric Mass Multiplet Equation (IMME) in the form of a cubic term can be probed. Such a cubic term was probed by using the atomic mass of neutron-rich magnesium isotopes measured using the TITAN Penning trap and the recently measured proton-separation energies of 29^{29}Cl and 30^{30}Ar. The atomic mass of 27^{27}Mg was found to be within 1.6σ\sigma of the value stated in the Atomic Mass Evaluation. The atomic masses of 28,29^{28,29}Mg were measured to be both within 1σ\sigma, while being 8 and 34 times more precise, respectively. Using the 29^{29}Mg mass excess and previous measurements of 29^{29}Cl we uncovered a cubic coefficient of dd = 28(7) keV, which is the largest known cubic coefficient of the IMME. This departure, however, could also be caused by experimental data with unknown systematic errors. Hence there is a need to confirm the mass excess of 28^{28}S and the one-neutron separation energy of 29^{29}Cl, which have both come from a single measurement. Finally, our results were compared to ab initio calculations from the valence-space in-medium similarity renormalization group, resulting in a good agreement.Comment: 7 pages, 3 figure

    Assimilation of the AMSU-A radiances using the CESM (v2.1.0) and the DART (v9.11.13)–RTTOV (v12.3)

    Get PDF
    To improve the initial condition (“analysis”) for numerical weather prediction, we attempt to assimilate observations from the Advanced Microwave Sounding Unit-A (AMSU-A) on board the low-Earth-orbiting satellites. The data assimilation system, used in this study, consists of the Data Assimilation Research Testbed (DART) and the Community Earth System Model as the global forecast model. Based on the ensemble Kalman filter scheme, DART supports the radiative transfer model that is used to simulate the satellite radiances from the model state. To make the AMSU-A data available to be assimilated in DART, preprocessing modules are developed, which consist of quality control, spatial thinning, and bias correction processes. In the quality control, two sub-processes are included, outlier test and channel selection, depending on the cloud condition and surface type. The bias correction process is divided into scan-bias correction and air-mass-bias correction. Like input data used in DART, the observation errors are also estimated for the AMSU-A channels. In the trial experiments, a positive analysis impact is obtained by assimilating the AMSU-A observations on top of the DART data assimilation system that already makes use of the conventional measurements. In particular, the analysis errors are significantly reduced in the whole troposphere and lower stratosphere over the Northern Hemisphere. Overall, this study demonstrates a positive impact on the analysis when the AMSU-A observations are assimilated in the DART assimilation system.</p
    • 

    corecore